Le livre *La Clinique Du Coureur : La santé par la course à pied* (DUBOIS, Blaise et Frédéric BERG) s'appuie sur la consultation de plus de 200 études scientifiques. La liste complète des références est accessible ci-dessous.

8. AIT. Running kinematics and shock absorption do not change after brief exhaustive running, 2011.


<table>
<thead>
<tr>
<th>Références bibliographiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>347. de Almeida MO, Saragiotto BT, Yamato TP et al. Is the rearfoot pattern the most frequently foot strike pattern among recreational shod distance runners? Phys Ther Sport 2015;16(1):29-33.</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHIQUES


RÉFÉRENCES BIBLIOGRAPHIQUES


605. Hart JM. Quadriceps activation following knee injuries: A systematic review. 2010;


BIBLIOGRAPHIES


707. ICRCP. Institut canadien de la recherche sur la condition physique et le mode de vie. http://www.cflri.ca/ 2012;


BIBLIGRAPHIES


BIBLIOGRAPHIES


867. Leitch RJ, Puhl MB and Ferber R Does lower limb orthotic comfort influence the reliability with which 3D gait kinematics are collected in healthy adults? Phys Ther Sport 2014;15(2):75-6

868. Léger L. Joint kinematics in participants with patellofemoral pain syndrome. 2012.


877. Leitch RJ, Puhl MB, Ferber R Does lower limb orthotic comfort influence the reliability with which 3D gait kinematics are collected in healthy adults? Phys Ther Sport 2014;15(2):75-6


879. Leitch RJ, Puhl MB and Ferber R Does lower limb orthotic comfort influence the reliability with which 3D gait kinematics are collected in healthy adults? Phys Ther Sport 2014;15(2):75-6


884. Lieberman DE. Stride type variation among Tarahumara Indians in minimal sandals versus conventional running shoes. Journal of Sport and Health Science 2014;3(2):86-94


BIBLIOGRAPHIES

1056. Munro. Ground reaction forces in running: A reexamination. 1987;
1032. Morin JB. Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run. 2011.


1094. Niemuth PE. Hip muscle weakness and overuse injuries in recreational runners. 2005;


<table>
<thead>
<tr>
<th>BIBLIOGRAPHIQUES</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
RÉFÉRENCES BIBLIGRAPHIQUES


1298. Rivais E, Smith JD and Sherman NW. Leg compressions improve ventilatory efficiency while reducing peak and post exercise blood lactate, but does not improve perceived exertion, exercise economy or aerobic exercise capacity in endurance-trained runners. Respir Physiol Neurobiol 2015;2015;

1299. Rivais E, Smith JD and Sherman NW. Leg compressions improve ventilatory efficiency while reducing peak and post exercise blood lactate, but does not improve perceived exertion, exercise economy or aerobic exercise capacity in endurance-trained runners. Respir Physiol Neurobiol 2015;2015;


www.LaCliniqueDuCoureur.com
RÉFÉRENCES


<table>
<thead>
<tr>
<th>Référence</th>
<th>Auteur(s)</th>
<th>Titre et Réf.</th>
<th>Année</th>
<th>Détails</th>
</tr>
</thead>
<tbody>
<tr>
<td>1421.</td>
<td>Smith TO, McNamara I, Donell ST</td>
<td>The contemporary management of anterior knee pain and patellofemoral instability.</td>
<td>Knee 2013;20 Suppl 1(S3-S15)</td>
<td></td>
</tr>
</tbody>
</table>


1646. Willson JD, Davis IS. Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands. Clin Biomech (Bristol, Avon) 2008;23(2):205-211.


1700. Wyndow N, De Jong A, Rialy et al. The relationship of foot and ankle mobility to the frontal plane projection angle in asymptomatic adults. J Foot Ankle Res 2016;9(3


